

February 2018

CLEARED FOR OPEN PUBLICATION
February 14, 2018

DEPARTMENT OF DEFENSE
OFFICE OF PREPUBLICATION AND SECURITY REVIEW

This report is a product of the Defense Science Board (DSB). The DSB is a Federal Advisory

Committee established to provide independent advice to the Secretary of Defense. Statements,

opinions, conclusions, and recommendations in this report do not necessarily represent the

official position of the Department of Defense.

MEMORANDUM FOR UNDER SECRETARY OF DEFENSE FOR RESEARCH AND

ENGINEERING

SUBJECT: Final Report of the Defense Science Board (DSB) Task Force on the Design and

Acquisition of Software for Defense Systems

 I am pleased to forward the final report of the DSB Task Force on the Design and Acquisition

of Software for Defense Systems, chaired by Dr. William LaPlante and Dr. Robert Wisnieff.

 The Task Force has made seven recommendations on how to improve software acquisition in

defense systems. A base recommendation underlying all others is to emphasize the importance of

the software factory and to incorporate the software factory as a key evaluation criterion in the

source selection process. Next, the Department of Defense (DoD) and its defense industrial base

partners need to adopt continuous iterative development best practices. The study recommends

DoD adopt best practices on risk reduction and metrics in formal program acquisition strategies.

Software strategies must be better incorporated in current and legacy programs from development,

production, and sustainment. The Task Force recommends ways to improve the software and

acquisition workforce, in both software development expertise and the broader functional

acquisition work force. Next, software is immortal and contracts must be framed to allow for

software sustainment. Finally, the Task Force recommends further research into machine learning

and the implementation of an independent verification and validation process for machine learning

and autonomy in software systems.

 Software is a crucial and growing part of weapons systems and the Department needs to be

able to sustain immortal software indefinitely. The Task Force concluded that the Department of

Defense would benefit from the implementation of continuous iterative development best practices

as software becomes an increasingly important part of defense systems.

 I concur with the Task Force’s conclusions and recommend you forward the report to the

Secretary of Defense.

 Dr. Craig Fields

 Chairman, DSB

THIS PAGE LEFT INTENTIONALLY BLANK

MEMORANDUM TO THE CHAIRMAN, DEFENSE SCIENCE BOARD

SUBJECT: Final Report of the Defense Science Board Task Force on the Design and Acquisition

of Software for Defense Systems

Attached is the final report of the Defense Science Board Task Force on the Design and Acquisition

of Software for Defense Systems. The Task Force was formed to determine whether the iterative

development practices in the commercial world are applicable to the development and sustainment

of software for the Department of Defense (DoD). The study Terms of Reference stipulated the

Task Force should:

 examine the current state of DoD software acquisition and recommend actions for the DoD

and its suppliers;

 consider development, test, and evaluation of learning systems;

 contrast and compare DoD and commercial software development and determine what

commercial software development capabilities military systems should embrace;

 identify impediments in DoD requirements, contracting, and program management and how

they might be removed;

 determine if “Agile” software techniques are being used effectively and identify

impediments;

 determine if the commercial concept of a minimum viable product should be adopted by the

DoD;

 determine best management approaches to achieve rapid and effective software upgrades,

including an analysis of modular, open architecture;

 look at lessons learned from recent software challenges (e.g., OCX, F-35); and

 provide recommendations to ensure rapid adoption of cognitive capabilities as they mature.

The Task Force assessed best practices from commercial industry as well as successes within the

DoD. Commercial embrace of iterative development has benefited bottom lines and cost, schedule,

and testing performance, while the Department and its defense industrial base partners are

hampered by bureaucratic practices and an existing government-imposed reward system. The Task

Force concluded that the Department needs to change its internal practices to encourage and

incentivize new practices in its contractor base. The assessment of the Task Force is that the

Department can leverage best practices of iterative development even in its mission critical

software systems.

The Task Force made seven recommendations on how to improve software acquisition in defense

systems. Our base recommendation, which underlies all other recommendations, is the importance

of the software factory – the efficacy of an offeror’s software factory should be a key evaluation

criterion in the source selection process for software. Next, the Department and its defense

industrial base partners need to adopt continuous iterative development best practices (continuing

through sustainment) for software. The Task Force recommends implementing certain best

practices on risk reduction and metrics in formal program acquisition strategies as well as

incorporating better software strategies in current and legacy programs in development,

production, and sustainment. The Task Force further recommends workforce actions, both in

software development expertise and in broader functional acquisition. The Task Force

acknowledges that software is immortal, and therefore, the Task Force provides recommendations

for software sustainment. Finally, the Task Force recommends further study of machine learning,

including the implementation of an independent verification and validation process for machine

learning and autonomy in software systems.

Software is a crucial and growing part of weapons systems and the national security mission, and

the DoD must address its ability to build and sustain software continuously and indefinitely.

Overall, the Task Force concludes that the Department can improve its methods of acquiring,

building, and incentivizing software in defense systems and will greatly benefit from altering some

of its acquisition practices and adopting continuous iterative development best practices.

Dr. William LaPlante Dr. Robert Wisnieff

Co-Chair Co-Chair

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Table of Contents |i

Table of Contents

Executive Summary ..1

1. Introduction ...3

1.1 The Importance of Software in Defense Systems ... 3

DoD Software Growth ... 3

DoD Software Risk Assessment ... 4

1.2 Silicon Valley Baedeker: Theories of Software Development ... 5

Waterfall Development ... 6

Agile Development .. 6

Agile DevOps ... 6

Iterative Development: Agile, Spins, and Spirals .. 6

2. Finding: Continuous Iterative Development for the Department of Defense7

2.1 DoD Software Processes ... 7

2.2 Commercial Software Processes ... 7

2.3 Software Factory ... 9

2.4 Addressing Cyber .. 10

2.5 Importance of Architecture .. 11

2.6 The Right Conditions for Iterative Development in Defense Systems 11

2.7 The Case For and Against Iterative Development for DoD Systems 14

3. Finding: Commercial, the DoD, and Its Partners: Case Studies .. 17

3.1 Differences and Similarities of DoD and Commercial Software Development................. 17

3.2 Defense Prime Contractors State of Play .. 18

4. Finding: Acquisition Strategies and Contracting Approaches .. 20

4.1 Software Acquisition Misalignment .. 20

4.2 Defense Acquisition Could Use Continuous Iterative Development in Many Types of

Programs .. 22

Ongoing Small-scale Major Development Programs (Hybrid Model) 22

Ongoing Large-scale Major Development Programs .. 22

New Programs ... 22

Legacy Programs ... 23

5. Recommendations ... 24

Recommendation 1: Software Factory ... 24

Recommendation 2: Continuous Iterative Development ... 24

Recommendation 3: Risk Reduction and Metrics for New Programs 25

Recommendations 4: Current and Legacy Programs in Development, Production, and

Sustainment.. 25

Recommendation 5: Workforce ... 26

Recommendation 6: Software is Immortal – Software Sustainment 27

Recommendation 7: Independent Verification and Validation for Machine Learning 27

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Table of Contents |ii

Appendix A: Task Force Terms of Reference .. A-1

Appendix B: Task Force Membership .. B-1

Appendix C: Recommendations .. C-1

Appendix D: Briefings Received .. D-1

Appendix E: Software Factory Source Selection Criteria Suggestions E-1

Appendix F: Acronyms and Abbreviated Terms .. F-1

Appendix G: Glossary ... G-1

Appendix H: Index .. H-1

List of Figures

Figure 1. DoD Software Complexity and Growth: Explosive Growth of Source Lines of Code

(SLOC) in Avionics Software ... 4

Figure 2. Software Risk Assessed by DoD Program Office .. 5

Figure 3. Theories of Software Development ... 5

Figure 4. DoD Software Process (Waterfall) .. 7

Figure 5. Commercial Software Process (Continuous Iterative Development) 8

Figure 6. Software Factory .. 9

Figure 7. Addressing Cyber in the Software Factory ... 10

Figure 8. Harvard Business Review: Embracing Agile .. 12

Figure 9. Favorable Conditions for Iterative Development on the F-35 13

Figure 10. Unfavorable Conditions for Iterative Development on the F-35 13

Figure 11. Dyba and Dingsoyr Meta-survey .. 15

Figure E-1. Software Factory in Source Selection ... E-1

 List of Boxes

Box 1: Facebook and Google Best Practices .. 17

Box 2: Iterative Development with Fixed Price: KC-46A Tanker ... 18

Box 3: Iterative Development for the National Security Mission: SpaceX 19

Box 4: National Security Agency Has Successfully Moved to Agile …With Limitations 19

Box 5: National Reconnaissance Office Best Practice: Database of Historic Cost Actuals for

Software Development – Waterfall or Agile ... 22

Box 6: Example of Legacy Program Moving to Iterative Development: Tomahawk 23

file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977222
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977223
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977224
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977225
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977226
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977226
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977227

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Executive Summary | 1

Executive Summary

The goal of the Defense Science Board (DSB) Task Force on Design and Acquisition of Software for

Defense Systems was to determine whether iterative software development practices evolved in

the commercial world are applicable to the development and sustainment of software for the

Department of Defense (DoD).

Software has become one of the most important components of our Nation’s weapons systems,

and it continues to grow in importance. Software defines the way our systems see, communicate,

and operate in combat. Design and acquisition decisions at the beginning of the software

development process frequently have far-reaching and long-term effects that impact the weapon

system’s efficacy on the battlefield and its ability to adapt to changing requirements.

Software development in the commercial world has undergone significant change in the last 15

years, while development of software for defense systems has continued to use techniques

developed in the 1970s through the 1990s. Traditional “Waterfall” software development

practices (i.e., determining a functional specification, writing the software, and testing the

software to the functional specification) have evolved in the commercial world into an iterative

process, called “Agile” or “continuous iterative development,” where a team develops software

in smaller blocks that can be incrementally evaluated by a user community. This incremental

approach allows updates and improvements to be rapidly incorporated into the software; in many

cases, updates are made every day. The DoD, however, still largely buys and develops software

developed using the slower traditional Waterfall approach that was mostly abandoned by

commercial companies years ago.

Modern commercial software development best practices use software factories, which are a set

of software tools that programmers use to write their code, confirm it meets style and other

requirements, collaborate with other members of the programming team, and automatically

build, test, and document their progress. This allows teams of programmers to do iterative

development with frequent feedback from users. Additionally, a number of new tools and

techniques are being utilized by the commercial sector, including:

‒ automation at scale;

‒ continuous development throughout the life of the product;

‒ increased and cheaper computing power;

‒ static, dynamic, and fuzz testing techniques, which have allowed substantial automated

software testing; and

‒ open source, which leverages a larger community of developers to create reusable

components and development tools.

These advances allow software production and sustainment to be done rapidly and continuously,

enabling greater flexibility as requirements change. Harnessing these techniques and practices

has yielded results in many commercial areas, from mobile and web technologies to banking,

finance, and trade.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Executive Summary | 2

The DoD can leverage today’s commercial development best practices to its advantage, including

on its weapons systems. Doing so will enable the DoD to move from a capabilities-based

acquisition model to a threat-based acquisition model. Making this transition is necessary if the

United States is to maintain its technological superiority and counter rapidly growing adversary

capabilities. Our adversaries are acquiring capabilities not previously anticipated and are doing so

at a pace that now challenges U.S. technological superiority. The DoD needs to return to a

modernized version of threat-based assessments. The United States must have the ability to

quickly respond to adversary advancements and update our systems accordingly. Rapid and

continuous software development will be essential to achieving this outcome.

The defense contractor base has not adopted many of the proven commercial sector software

development techniques due to DoD culture, internal practices, and a government approach to

contracting that disincentivizes their adoption. The DoD develops software and associated

contracting based on upfront detailed systems requirements and specification for the entire

completed system, an approach that is inadequate to meet today’s challenges. The Department

must change the structure of its contracts to incentivize best practices in its contractor base in

order to take advantage of these modern software development practices.

Problems associated with software development continue to plague major DoD acquisition

programs. This results in long delays in fielding, significant cost overruns, and, in some cases,

program cancellation. The problems appear to be caused by the same software development

issues that have occurred in programs over the last two decades. The Task Force strongly believes

greater adoption of continuous iterative development and its associated best practices will result

in significantly improved acquisition performance. The assessment of the Task Force is that an

iterative approach to software development and sustainment is applicable to the DoD and should

be adopted as quickly as possible.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 3

1. Introduction

1.1 The Importance of Software in Defense Systems

Software is a crucial and growing part of weapons systems and the national security mission.

While recognized as central to enterprise business systems and related information technology

(IT) services, the role software plays in enabling and enhancing weapons systems often goes

underappreciated.

Today, many of the capabilities provided by our weapons systems are derived from the software

of the system, not the hardware. This shift from hardware-enabled capabilities to software-

enabled capabilities is increasing quickly. As a 2017 paper published by the Institute for Defense

Analyses notes, “The Department of Defense is experiencing an explosive increase in its demand

for software-implemented features in weapon systems…in the meantime, defense software

productivity and industrial base capacity have not been growing as quickly.”1

In new weapons systems, software has become a significant part of the development and

qualification process. Improving functionality and security can be delayed or even prevented by

the inability to do the necessary testing; maintaining the complex testing infrastructure (i.e., both

human and computing) is a growing issue.

Software does not only affect new weapons systems under development. Legacy systems, such

as Tomahawk, F-16, and F-18, continue beyond design life due largely to improvements via

software upgrades. While original development of these legacy systems used traditional software

development practices, current upgrades have begun to employ iterative development practices,

including for basic sustainment.

Unlike hardware, software never dies. Laying the groundwork to allow software improvement

over the life of a weapons system is a strategic imperative. Utilizing development practices that

enable continuous upgrade of capability ensures software can be adapted to threats and

opportunities unanticipated during the specification of the system. The DoD must lay the

groundwork now for software to meet the demands of the future.

DoD Software Growth

One method of estimating the complexity, cost and schedule, and overall centrality of software is

to count the source lines of code (SLOC), often used as a basis of cost estimates.2 This method has

limitations – different languages and programming systems result in different SLOC counts, and

industry no longer considers this technique credible. Even so, SLOC provides insight into a

software system’s size and the SLOC, for many weapons systems, has grown dramatically over the

1 David M. Tate, “Software Productivity Trends and Issues (Conference Paper),” Institute for Defense
Analyses (March 2017): iii.
2 This procedural software cost estimation model is referred to as the Constructive Cost Model (COCOMO).

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 4

last four decades. Figure 1 illustrates this trend for avionics software. This growth in SLOC shows

how critical software is to the capabilities of advanced weapons systems.

Figure 1. DoD Software Complexity and Growth: Explosive Growth of Source Lines of Code (SLOC)

in Avionics Software3

DoD Software Risk Assessment

In the acquisition of new systems, software drives program risk for approximately 60 percent of

programs (shown in Figure 2). Risks come in many forms. When building systems with new

capabilities, it is not possible to anticipate all of the challenges until hands-on experience is

obtained, not only in terms of basic operations but also for concepts of operation and tactics,

techniques, and procedures. Unexpected complications can arise from unanticipated

interdependencies within the software itself, often driven by the underlying architecture. A

current DoD acquisition best practice is to reduce project risk by specifying the function of the

software in detail at the beginning of a program. However, when such a system is tested,

additional requirements typically are identified, thus requiring substantial effort to implement.

3 The information in this chart was compiled from Christian Hagen, Jeff Sorenson, Steven Hurt, and Dan
Wall, "Software: The Brains Behind U.S. Defense Systems," A.T. Kearney, 2012,
https://www.atkearney.com/documents/10192/247932/SoftwareThe_Brains_Behind_US_Defense_Syste
ms.pdf/69129873-eecc-4ddc-b798-c198a8ff1026. SLOC for F-16 and F-22 are at first operational flight.
SLOC for F-35 Block 2B and 3F plus support software provided by the USD(R&E) office.

https://www.atkearney.com/documents/10192/247932/SoftwareThe_Brains_Behind_US_Defense_Systems.pdf/69129873-eecc-4ddc-b798-c198a8ff1026
https://www.atkearney.com/documents/10192/247932/SoftwareThe_Brains_Behind_US_Defense_Systems.pdf/69129873-eecc-4ddc-b798-c198a8ff1026

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 5

Figure 2. Software Risk Assessed by DoD Program Office

1.2 Silicon Valley Baedeker: Theories of Software Development

A number of software theories have evolved over time regarding software development.

Assessing these different theories often leads to heated arguments about the best approach. This

report uses the term “continuous iterative development” to characterize the best method for the

DoD. Below is a Baedeker, or guide, to the various software approaches.

For more definitions of software terms, please see the glossary in Appendix G.

Figure 3. Theories of Software Development4

4 Graphic adapted from Tim Dioquino, “DevOps: Transforming Military Application Delivery Lifecycles,”
Hewlett Packard Enterprise, FedInsider, Intel, 14.

Software assessed among most frequent and most critical challenges,
 driving program risk on ~60% of acquisition programs.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 6

Waterfall Development

The traditional approach to software development is Waterfall development. Waterfall

development begins with writing down the full function specification. It is used to write the

program as well as the tests. When the software passes all of the tests, it is considered finished

and ready for delivery to the user.

Agile Development

Agile development, also called “iterative” development, begins with the creation of a software

factory. Development and testing sprints – a set period of time during which specific work is

completed – allow a team to do rapid iterations of development, obtain user feedback, and adjust

goals for the next increment. This framework allows for continuous development throughout the

life of the product.

Agile DevOps

DevOps entails running multiple Agile projects simultaneously to develop the next increment of

an application. DevOps requires careful architectural design to avoid unintended complications

by concurrent efforts. In general, this requires carefully defining the module and subsystem

interfaces; thorough testing of interfaces is mandatory.

Iterative Development: Agile, Spins, and Spirals

Iterative development is the ineluctable process imposed by use of a product – especially a

software product – that reveals a shortcoming or suggests an improvement. What distinguishes

traditional iterative development from Agile approaches to software design and development is

the velocity and granularity of the iterations. In venerable software production methodology

(Waterfall development), an iteration commences after field deployment and use. New

development approaches (i.e., Agile, spin, spiral) uncover and deal with flaws and opportunities

much earlier in the process, leading to rapid development of a more robust product delivered to

the field.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 7

2. Finding: Continuous Iterative Development for the Department of

Defense

2.1 DoD Software Processes

The standard software development process in the DoD follows the linear path illustrated in

Figure 4: requirements are finalized and documented, schedule and cost is set at the beginning of

the program (often using legacy SLOC-based models), and a preliminary design review is

performed leading up to the release of the development request for proposal (RFP). After

Milestone B and contract award, software is developed using resources determined by estimating

the SLOC of each section of software. Finally, the system is tested prior to release. This approach,

referred to as “Waterfall development,” dominated all of commercial and defense software

development until the early 2000s.

Figure 4. DoD Software Process (Waterfall)

2.2 Commercial Software Processes

The growth of mobile computing in the 2000s forced commercial organizations to look for ways

to write software without knowing all of the requirements ahead of time while anticipating future

security and testing concerns. To wait for certainty about requirements meant companies losing

their markets. The goal was to find ways to iteratively develop software, extending capability

incrementally over time.

Figure 5 illustrates the cyclical process of continuous iterative development commonly employed

in the commercial sector. Goals and features are identified at the beginning, but requirements

are not strictly set as in the usual DoD process. User feedback is used to establish goals of each

iteration (called a “sprint”) and to establish the definition and expectations of the minimum viable

product (MVP). The software team writes the software using a highly automated tool chain that

rebuilds the system and tests the resulting changes every night. If issues are found, the developers

make the necessary changes the next day. The continuous development process, which lasts

weeks, delivers an MVP to the user at the end of each iteration. Within the loop, there are nightly

builds and tests, including durable, automated granular, performance, security, and capability

tests that facilitate confidence when changes are subsequently introduced. Problems can be

identified daily. The goal of this process is delivering a series of products that provide enhanced

functionality, facilitating ongoing safe modification, and enabling users to evaluate performance

that drives the next iteration.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 8

Figure 5. Commercial Software Process (Continuous Iterative Development)

The decrease in the cost of computing made this iterative development approach cost-effective.

Previously, it was too expensive to run a computing infrastructure that could build and test the

entire project every night. Large projects would compile the entire software system every six to

nine months, making it more difficult for a programmer to see dependencies or other problems

with the system. This iterative and more automated approach initially was embraced in the mobile

space; its success led to widespread adoption across most areas of the commercial world.

Going from one MVP to another enables spiral development. The lessons learned during an

iteration cycle are used to set key features and changes for the next iteration. Software

architecture is key to enabling this approach and must be designed to allow and account for

changes. Therefore, function must be assigned to modules to enable likely extensions and

evolution. Successful developments become visible in the product while unsuccessful ones are

discarded. Companies often ameliorate the risk of unsuccessful architectures by starting multiple

groups with different architectures and down-selecting when the best architecture is determined,

which is not an easy task.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 9

2.3 Software Factory

Figure 6. Software Factory

Underlying iterative development is the software factory, illustrated in Figure 6. Low-cost, cloud-

based computing is used to assemble a set of tools (see Appendix E for an example list of

applications) that enable the developers, users, and management to work together on a daily

tempo. The goal is to ensure the code meets requirements by building and testing the application

automatically every day and feeding back any issues to the developer responsible for the code. A

source code repository archives current and past versions of the application while each developer

works on a local copy of the code. After attaining a stable version, it is uploaded to the repository

along with extensive tests and test data, and documentation listing the added features and

resolved issues. In most organizations, code is peer reviewed prior to the upload. Peer review is

especially useful for new members of the team, allowing them to learn the nuances of the

software system conventions.

Once the code is uploaded, a style checker ensures there are no violations of coding conventions

and then the software system is built. For interpreted languages such as Python or Swift, the build

process involves static testing (i.e., no undeclared variable, no variables being called after the

variable has been discarded) and syntax checking. For compiled languages, such as C, a

compilation of the source code to executable code is involved. Individual modules then go

through unit testing, which validates resolution of previously identified issues as well as

compatibility with required functionality. In a new project, the first software written is often the

unit tests and, in fact, comprehensive unit tests can offer the best insight into function. The full

build is dynamically tested by executing use-scenarios identified as edge cases. Fuzz testing is also

used — giving random inputs of all allowed values — to look for instances where unexpected

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 10

behavior is displayed. Any issues identified during the build and test process are communicated

to the programmer and errors receive attention quickly.

The build process also generates documentation. Typical tool chains allow the programmer to

incorporate documentation directly into source code. The documentation can then be extracted

and the documents assembled. Next, the full system is packaged into a container allowing rapid,

reliable deployment to users. Users and automated monitoring provide feedback to the

development team through the project management software, providing a channel to

communicate desired feature additions and modifications as well as prioritized bug reports.

2.4 Addressing Cyber

Figure 7. Addressing Cyber in the Software Factory

A tool chain for iterative development enables code to be developed that meets a set of cyber

rules (shown in Figure 7), which prohibit constructions likely to become vulnerabilities. The cyber

rules are formulated as style sheet checks. Code that violates the rules (e.g., not checking for

overflow) is highlighted to the programmer. The National Institute of Standards and Technology

(NIST) guidelines may be used as a starting point for this list of cyber rules. Checking a software

system’s code base daily keeps manageable the number of changes required to comply with a

large base of cyber rules. When a new vulnerability is discovered, additional rules are formulated

to detect similar errors in code. Dynamic testing helps identify logic errors and fuzz testing checks

for vulnerabilities to user input-induced faults. Red teams are also periodically employed to

evaluate the packaged code for faults. Issues identified by red teams are fed back along with

automated tests preventing future similar issues.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 11

2.5 Importance of Architecture

Given today’s dynamic security environment, it is impossible to formulate a complete set of

software requirements ahead of time. Without a robust underlying architecture, someone

working on a low-level function will be unable to understand all the end applications in which a

function might be used. Therefore, the architect must try to define modules in a way that avoids

cross-couplings, whereby changes in one module impact and require changes to other modules.

A goal of iterative development is to have many programmers concurrently working on different

aspects of a shared code base; however, this parallel effort is possible only with a suitable

architecture. Avoiding conflict between the different concurrent efforts requires an

understanding of which aspects of the program will require de-conflicting and ensuring that only

one programmer has responsibility for implementation.

While full specifications should be eschewed, emphasis must be placed early on in a project to

develop clear, complete, and easily communicated principles of operation. Initial builds with

alternate architectures may help to gain sufficient understanding to make an informed choice of

final architecture. The Task Force found commercial practice starts with several competing

architectures and winnows down to the one that experience suggests can handle iterative

development requirements. While this practice at first seems inefficient, the long-term gain of an

architecture that permits iterative development justifies the investment. In addition, well-

architected, well-documented components accompanied by automated tests can often be

reused.

2.6 The Right Conditions for Iterative Development in Defense Systems

After assessing the different software development methods and examining the benefits derived

from employing iterative development practices in the commercial sector, the Task Force believes

there are many circumstances where adoption of continuous iterative development would greatly

benefit the DoD and its defense contractors.

The main benefit of iterative development — the ability to catch errors quickly and continuously,

integrate new code with ease, and obtain user feedback throughout the development of the

application — will help the DoD to operate in today’s dynamic security environment, where

threats are changing faster than Waterfall development can handle.

Systems such as platform mission software, electronic warfare (EW), communications, radar, and

launch systems could benefit from continuous improvements and extensions to system

capabilities, crucial for creating tactical advantage and coping with strategic surprise. The Task

Force found the EW domain especially could benefit from modern software practices.5 In EW,

rapid software changes allow both new modes to be deployed and new adversary capabilities to

be detected on an operationally useful timeframe.

5 For more information on electronic warfare, see the Defense Science Board’s report, “21st Century Military
Operations in a Complex Electromagnetic Environment,” U.S. Department of Defense, July 2015,
http://www.dtic.mil/dtic/tr/fulltext/u2/1001629.pdf.

http://www.dtic.mil/dtic/tr/fulltext/u2/1001629.pdf

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 12

However, not all projects are well-suited to iterative development approaches. Examples of

applications unlikely to benefit from iterative development include digital engine control systems,

low-level mission critical flight control systems, and legacy systems at end-of-life. The first two

examples are systems that control a platform (e.g., jet engine or airframe) that seldom change

over the life of the application; these applications are specified during development to keep the

platform within acceptable operational limits that will not change. Still, even these systems

benefit by the automated modelling and testing modern software factories encourage. End-of-

life systems are no longer undergoing application development.

Ground control systems and enterprise logistics support systems do not require changes as

frequently as EW systems, but they do require changes more frequently than the low-level

mission critical flight control systems. Ground control systems and enterprise logistics support

systems need to be able to innovate quickly to respond to the loss of some of their system

elements. This is where the architecture again comes into play — a good architecture can enable

iterative approaches in these systems while a poor architecture can impede iterative approaches.

Figure 8 provides an overview of favorable and unfavorable conditions for iterative development.

Figures 9 and 10 illustrate how some capabilities are well-suited for iterative development while

other capabilities are not, even on the same weapons platform.

Figure 8. Harvard Business Review: Embracing Agile6

6 Darrell K. Rigby, Jeff Sutherland, and Hirotaka Takeuchi, “Embracing Agile,” Harvard Business Review (May
2016), https://hbr.org/2016/05/embracing-agile.

https://hbr.org/2016/05/embracing-agile

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 13

Figure 9. Favorable Conditions for Iterative Development on the F-35

[Highlighted functions will change often with new sensors and algorithm development. Changes are

possible even mission to mission, and must be rapidly upgradable to protect the viability of the platform.]

Figure 10. Unfavorable Conditions for Iterative Development on the F-35

[Highlighted functions impact flight safety, require rigorous acceptance testing and are not expected to

regularly change throughout the platform life.]

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 14

In addition to iterative development producing the best results for projects ideally suited to

benefit from its process, many of its techniques and best practices can produce benefits even

when applied to a Waterfall development project. For example, the requirements for Boeing’s

fixed-price KC-46A tanker were set for over seven years with little chance of changing, but by

using a software factory for development, programmatic error risks were reduced. Therefore,

even under conditions that would suggest a Waterfall approach, programmers can still improve

their processes and end products by adopting some iterative techniques.

2.7 The Case For and Against Iterative Development for DoD Systems

There is considerable anecdotal evidence to support the Task Force’s belief that iterative

development techniques are attractive for the DoD and its contractors. Companies that have

embraced Agile approaches speak highly of the payoffs, and this family of approaches have

become the standard in commercial software development, from Microsoft to Amazon to Google

to Facebook. IBM is now making the transition to this approach as well. Moreover, there are no

reports of companies transitioning from Agile to Waterfall software development approaches.

However, there are no widely cited or authoritative empirical studies to support the thesis that

Agile development practices are superior to Waterfall approaches. Even if there were such

studies, they would likely be focused on commercial software and, thus, one might question

whether those results would translate to the kinds of software systems that the DoD builds, which

are often characterized by a real-time control requirement and a high-end security threat.

Ideally, empirical studies would account for various kinds of Agile development methods, system

architectures, programming languages, and systems (i.e., enterprise data processing vs. real-time

control vs. signal processing). Yet, to build a substantially sized system even twice — once using

Waterfall and once using Agile — would be costly and time consuming. Therefore, generalizations

must be made from empirical studies of relatively small systems.

There are also many dimensions for comparison. A useful study might hope to understand the

impact of iterative development on direct measures such as quality (i.e., measured in terms of

reported bugs or exploitable vulnerabilities), system size (i.e., measured as SLOC), and

development effort (i.e., elapsed time or total labor hours). Results also need to be calibrated

based on the expertise and experience of the development team with the nature of the problem,

the programming language, and the tool chains, among others.

The Task Force expects that, over time, considerable literature will be produced documenting

experiences with iterative development methods. Using that literature, a better understanding of

the benefits will emerge. For now, the Task Force found only two studies that surveyed the use of

iterative development providing empirical comparisons. One contained a survey of 36 empirical

studies prior to 2005.7 Of the studies surveyed there, four gave empirical data for productivity

7 Tore Dyba and Torgeir Dingsoyr, “Empirical studies of agile software development: A systemic review,”
Information and Software Technology 50, no. 9-10 (2008), https://doi.org/10.1016/j.infsof.2008.01.006.

https://doi.org/10.1016/j.infsof.2008.01.006

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 15

comparison of the “extreme programming” (XP) version of iterative versus traditional

development. Figure 11 summarizes these results using lines of code (LOC) as the measurement.

Figure 11. Dyba and Dingsoyr Meta-survey8

Some of the other relevant findings include the following:

 S109 finds that 13% fewer defects were reported by the customer as compared with a

non-Agile project.

 S1410 found a 65% improvement in pre-release quality and a 35% improvement in post-

release quality for an Agile-developed project.

 S1511 compared XP with Waterfall and found no difference in observed quality when

comparing the work of 10 XP teams and 10 traditional teams.

 S2812 compared Agile and document-driven approaches in managing uncertainty in

software development, finding companies that use Agile methods are more customer-

centric and flexible than document-driven ones, and companies that use Agile methods

seem to have a more satisfactory relationship with the customer.

8 S7 involved 15 teams and used four different approaches. This study showed the greatest difference
between traditional and Agile. The Agile team delivered far more code, but achieved the same functionality
as the traditional team. Regarding S14, the Agile team had more experience with languages and
management. S32 was a study concerning student programmers.
9 Sylvia Ilieva, Penko Ivanov, and Eliza Stefanova, “Analyses of an agile methodology implementation,”
Proceedings of the 30th EUROMICRO Conference, 2004, http://ieeexplore.ieee.org/document/1333387/.
10 Lucas Layman, Laurie Williams, and Lynn Cunningham, “Exploring Extreme Programming in Context: An
Industrial Case Study,” Proceedings of the Agile Development Conference, 2004,
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1359793.
11 Francisco Macias, Mike Holcombe, and Marian Gheorghe, “A Formal Experiment Comparing Extreme
Programming with Traditional Software Construction,” Proceedings of the Fourth Mexican International
Conference on Computer Science, 2003, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
1232877.
12 Alberto Sillitti, Martina Ceschi, Barbara Russo, and Giancarlo Succi, “Managing Uncertainty in
Requirements: a Survey in Documentation-driven and Agile Companies,” 11th IEEE International Software
Metrics Symposium, 2005, http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1509295.

http://ieeexplore.ieee.org/document/1333387/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1359793
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1232877
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1232877
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1509295

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 16

 S1813 asked subjects whether the team’s productivity had increased significantly as a

result of the development process that was used. On a scale from one (strongly disagree)

to six (strongly agree), the mean for the non-XP developers was 3.78, while the mean for

the XP developers was 4.75.

 S3214 compared plan-driven and Agile development to team cohesion and product

quality. The XP team’s code scored consistently better on the quality metrics used than

the traditional team. In addition, the quality of the code delivered by the XP team was

found to be significantly greater than that delivered by the traditional team. However,

both teams agreed the traditional team had developed a better and much more

consistent user interface.

A second meta-survey15 of 29 studies (of 300 articles analyzed) found that Agile development

yielded the following return on investment (ROI):

 29% lower cost

 91% better schedule

 50% better quality

 400% better job satisfaction

The Task Force concluded there are too many variables to generalize from this past work to

quantify the benefits to the DoD by switching to iterative methods. Much more experience is

needed before authoritative empirical results about the benefits of iterative development can

provide insight to the DoD and its contractors. However, the principles behind Agile development

can be evaluated on their own merits by people who understand the software development

enterprise. The Task Force found these principles to be sound. Moreover, they address problems

the DoD has been experiencing with Waterfall approaches. Finally, even without careful

experimental results, the widespread adoption and endorsement of iterative techniques by the

commercial sector supports the view that DoD contractors will benefit from making the transition.

13 Katiuscia Mannaro, Marco Melis, and Michele Marchesi, “Empirical Analysis on the Satisfaction of IT
Employees Comparing XP Practices with Other Software Development Methodologies,” in Extreme
Programming and Agile Processes in Software Engineering, eds. Jutta Eckstein and Hubert Baumeister (New
York: Springer-Verlag, 2004), 166-174, https://link.springer.com/chapter/10.1007/978-3-540-24853-8_19.
14 Carol A. Wellington, Thomas Briggs, and C. Dudley Girard, “Comparison of Student Experiences with Plan-

Driven and Agile Methodologies,” 35th ASEE/IEEE Frontiers in Education Conference, 2005,
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1611951.
15 David F. Rico, “What is the ROI of Agile vs. Traditional Methods,” http://w.davidfrico.com/rico08b.pdf.

https://link.springer.com/chapter/10.1007/978-3-540-24853-8_19
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1611951
http://w.davidfrico.com/rico08b.pdf

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 17

3. Finding: Commercial, the DoD, and Its Partners: Case Studies

3.1 Differences and Similarities of DoD and Commercial Software Development

Commercial development practice has rapidly evolved over the last 15 years. The need to adapt

to changes while maintaining a consistent user experience forced companies to use large teams

of development engineers located at different sites but working together. Keeping the teams

synchronized meant everyone had to work from a common code base, everyone used the same

programming style and tools, and everyone received rapid feedback about the impact of changes.

Cloud-based development environments made daily compilation, linking, and testing of the entire

codebase possible. Weekly updates evolved into nearly continuous events. The different parts of

the tool chain also evolved, many of them open source. This is in contrast with much of the

software development that is done for the DoD. The Task Force met with several commercial

industry representatives, including from Facebook and Google. Box 1 explains some commercial

best practices for software development.

FACEBOOK
Facebook was one of the first companies to embrace iterative

development to meet demand and deliver a superior user experience

in the mobile marketplace. Facebook delivers a continuous stream of

improvements on hardware (e.g., cell phones, tablets) over which they

have no control, and deals with attempts to curtail its access to certain

geographies on a daily basis. Currently, Facebook operates with the

DevOps mode with many teams developing improvements

simultaneously and releasing these improvements continually. All of

the aspects of a software factory are used along with peer review,

enabling new members to be brought up-to-speed on coding practice.

Dynamic and fuzz testing are used to catch errors.

Programmers are required to be online during the launch of their code.

Facebook programmers have developed a strategy of incremental

release that limits the downside potential of an unintended

consequence.

 GOOGLE

Google is also at the leading edge of high-speed iterative development,

mostly using small teams of people working on projects that feed into

a platform. They perform more than 150 million test cases per day. Like

Facebook, they have developed a release strategy (called “canaries”)

that limits downside risk.

Box 1: Facebook and Google Best Practices 1

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 18

3.2 Defense Prime Contractors State of Play

Most software developed by the major defense prime contractors follows the traditional

Waterfall process, albeit with some exceptions where large programs are broken into blocks,

which may themselves last a year or more. These contractors are familiar to some degree with

iterative development—some more so than others. Most have used it on selected small programs

or portions of larger DoD programs. Some seem eager to pursue iterative development as their

primary methodology. DoD contractors understand they are 15 years behind best commercial

practices and would benefit from closer and more frequent customer feedback that iterative

development enables. Nevertheless, the defense prime contractors’ perception is that they are

unable to adopt iterative development methods because DoD contracts require documentation,

progress reviews, and incentives based on a Waterfall model.

Others see iterative development as something useful for web applications, but not appropriate

for most defense systems due to their complexity and importance. These DoD contractors do not

seem inclined to change their current approach to developing software given the current

incentive structure.

Still, others are already trying to adopt portions of the iterative process into their development

processes when it does not conflict with contractual language. They cite cost and schedule

benefits in doing so. There are cases of iterative processes used for large-scale, fixed-price

development programs whose requirements have been unchanged for many years (e.g., KC-46A

Tanker). Three examples of iterative development implementation among defense prime

contractors follow in Boxes 2, 3, and 4

Box 2: Iterative Development with Fixed Price: KC-46A Tanker

The KC-46A Pegasus is the aerial refueling and strategic military transport

aircraft developed by Boeing based upon its design of the 767 jet airliner.

The tanker has been under development since 2011 and will replace the

older KC-135 Stratotankers. The first 18 KC-46A are scheduled to be

delivered to the U.S. Air Force in 2018. The development phase of the KC-

46A is being conducted under a fixed-price incentive-fee contract, where the

U.S. Government’s liability is capped at the fixed-price ceiling and any cost

overaged is the responsibility of the industry partner. As with other fixed-

price development programs, there is an emphasis by the U.S. Government

to keep requirements firm to meet the terms of the fixed-price contract.

Accordingly, there have been no requirements changes to the program since

2011. However, within this overall fixed requirement structure, Boeing has

segmented the software development into small pieces and is using modern

iterative software development practices. This is in essence a hybrid

approach between Waterfall and modern iterative software development.

2

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 19

SpaceX appears to be an “existence proof” that modern DevOps commercial practices can be

used effectively for rapidly changing systems that are mission critical for national security, in this

case the Air Force Space Launch.

SpaceX uses Agile scrum – a framework for managing Agile software development – for the

project management of critical internal systems (Enterprise Resource Planning, Space

Operations, Finance, and Human Resources). A continuous deployment pipeline for updating

critical internal information multiple times per day is utilized. Furthermore, the internal

application infrastructure is managed entirely in code for both Windows and Linux hosts and

utilizes automated testing of software artifacts.

As an acquisition model, the U.S. Government competes the launch as a service. When SpaceX

wins an award, they have the freedom to develop hardware and software organically as they

see fit; however, it must remain launch certified. SpaceX has been using iterative software since

2010. Requirements changes come from both the customer (e.g., specifics to each launch

mission) and from SpaceX internally (e.g., improvements to capability).

Box 3: Iterative Development for the National Security Mission: SpaceX 3

The National Security Agency (NSA) successfully has moved to an Agile-iterative

model for much of its software development since 2012. Tools and in-house

expertise have been built, allowing defense contractors to contribute and bring

mission experience. However, the NSA essentially owns the software factory and

buys software development by the hour from the contractors.

Box 4: National Security Agency Has Successfully Moved to Agile

…With Limitations

Using modern commercial tools combined with NSA-approved encryption and security measures,

teams of multiple contractors at multiple locations can collaborate simultaneously.

This model has been successful but with some limitations:

‒ The model is typically used for systems with stable hardware processing environments only.

‒ The NSA defines and manages the development process. While contractors apply specific

local expertise and write most of the code, the NSA tightly manages the process and metrics.

This requires highly trained and capable program managers on the part of the customers who

are experts in the Agile process.

‒ Since the NSA manages the process and buys software development by the hour, contractors

do not develop intellectual property and, therefore, do not have business-case incentives for

large investments to advance the relevant technologies. This lack of investment is often

disappointing to U.S. Government customers who seek more industry investments in these

areas.

‒ The NSA is intimately involved in the daily development of the software by the contractor.

4

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 20

4. Finding: Acquisition Strategies and Contracting Approaches

4.1 Software Acquisition Misalignment

For almost a decade, experts — including the DSB16 — have noted the linear defense acquisition

process is ill-suited to accommodate how modern IT is produced, adapted commercially, and

employed. Today, modern software development only makes this misalignment more glaringly

apparent. The fundamental mechanisms used by the DoD and the defense industrial base for

achieving a fielded capability — acquisition strategies, RFPs and source selection, and contracting

— are not aligned with the realities of current continuous software development and deployment

as practiced commercially. In the rare cases where modern software approaches were truly used

(not just claimed to be used) in national security mission systems, nonstandard acquisition and

contracting approaches were used to work around the standard system. This is unacceptable and

must be fixed.

In the development of complex weapons systems, the largely accepted contracting approaches

tend to use cost reimbursable type contracts, with specifics detailed in the categories and variance

in the incentives (i.e., incentive fee or award fee). Once in production, the DoD often switches to

fixed-price contracts, again using award fee or incentive approaches. In sustainment, the DoD

often goes to services contracts — the exemplar being the best practice of performance-based

logistics service contracts.

The Task Force found contracting approaches and incentive structures for software intensive

systems need to be updated to enable and encourage the DoD and its contractors to begin using

continuous iterative development when applicable. The speed of modern software iterations (i.e.,

sprints) and the agility required to change specifications quickly necessitates a new approach.

Without prescribing the exact answer, the Task Force found best practices for a new approach to

developing and acquiring software should include:

 contracting software development as a service (e.g., the United States paying for

contracted software development as a service);

 paying for the overall outcome as a service (e.g., paying SpaceX for space launches or

problem-based learning for sustainment programs); and

 fixed-price development programs where hybrid iterative approaches have been adopted

by industry to control costs.

The classic acquisition metrics include cost, schedule, and performance. The classic phases of

acquisition include development, production, and sustainment. However, modern software is in

16 Defense Science Board, “Defense Science Board Task Force on Department of Defense Policies and
Procedures for the Acquisition of Information Technology,” U.S. Department of Defense, March 2009,
https://www.acq.osd.mil/dsb/reports/2000s/ADA498375.pdf.

https://www.acq.osd.mil/dsb/reports/2000s/ADA498375.pdf

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 21

continuous development. This creates a misalignment between the DoD’s processes and the

reality of contemporary best practices.

Average Acquisition Category (ACAT) I development programs develop schedules for five years,

lasting from Milestones B to C. The initial development actually takes closer to seven years, with

a follow-on capability provided every two years.

Money allocation (i.e., colors of money) and funding distribution phases are not well-aligned with

how software is developed today. The closest DoD analogies are Planning, Performance, Process

& Innovative Solutions, Inc. (P3I), smaller ACAT programs, life-extension, routine sustainment, or

the U.S. Special Operations Command (USSOCOM) Major Force Program 11 (MFP-11). These DoD

acquisition approaches feature upgrades to existing systems handled within the acquisition

system. However, the approaches are all aimed at different purposes and were designed in an era

where continuous iterative development was not available and widely employed.

As an example of the mismatch between traditional acquisition metrics and modern software

development, it is useful to consider the independent U.S. watchdog, the U.S. Government

Accountability Office (GAO). The GAO’s annual report to Congress on the performance of the

defense acquisition system compares total cost and schedule across all colors of money per

program values of the current year to previous years. It also compares changes from the original

estimate from previous years. This leads to conclusions by the GAO that are often misleading. The

misperceptions created by many GAO reports are difficult to rectify because the reports attract

headlines in the press that already fit into preconceived notions about government waste, as

demonstrated in the quote below:

Over the past year, the total acquisition cost for the 79 programs in the 2015 portfolio

decreased by $2.5 billion and the average schedule delay in achieving initial capability

increased by 2.4 months. When assessed against first full estimates, total costs have

increased by $469 billion, over 48 percent, most of which occurred over five years ago.

The average delay in delivering initial capabilities has increased to almost 30 months.17

The National Reconnaissance Office (NRO) has developed a useful method for cost estimation,

which is explained in Box 5.

17 Michael J. Sullivan, “Weapons Acquisition Program Outcomes and Efforts to Reform DOD’S Acquisition
Process,” U.S. Government Accountability Office, 2016, http://www.dtic.mil/dtic/tr/fulltext/
u2/1016830.pdf.

http://www.dtic.mil/dtic/tr/fulltext/u2/1016830.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/1016830.pdf

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 22

4.2 Defense Acquisition Could Use Continuous Iterative Development in Many

Types of Programs

A key finding of the Task Force is defense acquisition and weapons systems can exploit modern

continuous development techniques, including for mission critical systems and subsystems.

Ongoing acquisition programs – whether in development, production, or sustainment – should be

tailored to their acquisition strategy, systems architecture, and maturity.

Ongoing Small-scale Major Development Programs (Hybrid Model)

Ongoing small-scale major development programs (e.g., KC-46A fixed-price development, see Box

2) may still be done using iterative development at a small scale provided the end product remains

unchanged (i.e., meets specifications of the contract). Typically, overall technical specifications

are derived from the requirements — a perfected statement of the need as expressed by the user.

Precise specifications are typically enshrined in the contract, which is awarded at the beginning

of development (e.g., Milestone B) in traditional defense acquisition programs.

Ongoing Large-scale Major Development Programs

In the course of incremental developments, the designer and/or the customer may find original

specifications incomplete, overly ambitious, too conservative, or otherwise undesirable due to

technology change or warfighter need. If software is incrementally built and tested — and the

user is exposed to interim products — alternatives may become apparent. Thus, iterative

development opportunities will emerge for large-scale major development programs (e.g., F-35).

However, to change a requirement in an ongoing program, the law requires a Configuration

Steering Board (CSB) review the issue, a formal process that may require a lengthy staffing and

high-level approval process – the opposite of Agile.

New Programs

New programs provide a clean slate opportunity for iterative development from the beginning.

An alternative acquisition approach could be to compete software development as a service

Cost estimation at the start of software intensive DoD programs is difficult.

Most independent cost estimates (i.e., the Independent Cost Estimate

(ICE) performed by the Cost Assessment and Program Evaluation (CAPE) or

Service Cost Estimators) use outdated SLOC-based cost models. CAPE and

Service Cost Estimators’ historic cost data appear sparse. SLOC-based

assumptions are compared to historical “comparables” with mixed results

in matching program actuals.

‒ The NRO established a contractual relationship with all of their major

prime contractors to provide internal cost data software by the

contractor.

Box 5: National Reconnaissance Office Best Practice:
Database of Historic Cost Actuals for Software Development – Waterfall or Agile

5

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 23

where source selection is chosen for its “best value” for mission success. In this case, multiple

vendors should be considered and the deliverable considered a service rather than a product.

Legacy Programs

Even in cases where development is complete, there is still an opportunity to utilize the benefits

of iterative development, demonstrated in Box 6.

Tomahawk is currently executing a streamlined, hybrid-Agile approach,

with good results. The development approach for Tomahawk add-on,

however, is still Waterfall. The program is conducting two-week long

sprints over a defined period of time (i.e., the Waterfall spiral time) with

the goal of discovering defects earlier, not necessarily shortening the time

to completion. The benefit of this process is that shorter sprints allow for

periodic deliveries for early integration and testing, as well as cyber scans.

This approach will be implemented in full in the next baseline (Tactical

Tomahawk Weapons Control System v5.6.1).

Box 6: Example of Legacy Program Moving to Iterative Development:

Tomahawk

6

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 24

5. Recommendations

Recommendation 1: Software Factory

A key evaluation criterion in the source selection process should be the efficacy of the offeror’s

software factory.

The Under Secretary of Defense for Research and Engineering (USD(R&E)) should immediately

task the Defense Digital Service (DDS), the U.S. Air Force Life Cycle Management Center (LCMC),

the Software Engineering Institute (SEI) Federally Funded Research and Development Center

(FFRDC), the U.S. Naval Air Systems Command (NAVAIR), and the Army Materiel Command

(AMC) to establish a common list of source selection criteria for evaluating software factories for

use throughout the Department (see Appendix E for suggested draft criteria). To be considered

minimally viable for a proposal, competing contractors should have to demonstrate at least a

pass-fail ability to construct a software factory. The criteria should be reviewed and updated every

five years.

The DoD has limited iterative development expertise. Focusing this expertise during source

selection uses this limited talent in the most efficient way.

Recommendation 2: Continuous Iterative Development

The DoD and its defense industrial base partners should adopt continuous iterative development

best practices for software, including through sustainment.

The Service Acquisition Executives (SAE), with the program executive officers (PEOs), the

program managers (PMs), and the Joint Staff/J-8, should, over the next year, identify minimum

viable product (MVP) approaches and delegate acquisition authority to the PM (cascade

approach), providing motivation to do MVP and work with the users to:

‒ deliver a series of viable products (starting with MVP) followed by successive next viable

products (NVPs);

‒ establish MVP and the equivalent of a product manager for each program in its formal

acquisition strategy, and arrange for the warfighter to adopt the initial operational

capability (IOC) as an MVP for evaluation and feedback; and

‒ engage Congress to change statutes to transition Configuration Steering Boards (CSB) to

support rapid iterative approaches (Fiscal Year (FY) 2009 National Defense Authorization

Act (NDAA), Section 814).

The Defense Acquisition Executive (DAE) and the SAE or the Milestone Decision Authority (MDA)

(i.e., PEO or PM) should require all programs entering Milestone B to implement these iterative

processes for Acquisition Category (ACAT) I, II, and III programs. The goal is not to be overly

prescriptive, and the details should be tailored to each program. Progress should be made on this

action by summer 2018.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 25

The SAE should identify best practices and decide how to incorporate these practices into regular

program reviews (e.g., the Defense Acquisition Boards (DABs), the Internal Program Reviews

(IPRs), and the Service Review Boards), and waivers should be done only by exception.

Recommendation 3: Risk Reduction and Metrics for New Programs

For all new programs, starting immediately, the following best practices should be implemented

in formal program acquisition strategies.

The MDA (with the DAE, the SAE, the PEO, and the PM) should allow multiple vendors to begin

work. A down-select should happen after at least one vendor has proven they can do the work,

and should retain several vendors through development to reduce risk, as feasible.

The MDA with the Cost Assessment and Program Evaluation office (CAPE), the USD(R&E), the

Service Cost Estimators, and others should modernize cost and schedule estimates and

measurements. They should evolve from a pure SLOC approach to historical comparables as a

measurement, and should adopt the National Reconnaissance Office (NRO) approach

(demonstrated in Box 5) of contracting with the defense industrial base for work breakdown

schedule data to include, among others, staff, cost, and productivity.

The MDA should immediately require the PM to build a program-appropriate framework for

status estimation. Example metrics include:18

‒ Sprint Burndown: tracks the completion of work throughout the sprint.

‒ Epic and Release Burndown: tracks the progress of development over a larger body of

work than a sprint.

‒ Velocity: the average amount of work a team completes during a sprint.

‒ Control Chart: focus on the cycle time of individual issues—the total time from “in

progress” to “complete.”

‒ Cumulative Flow Diagram: shows whether the flow of work across the team is consistent;

visually points out shortages and bottlenecks.

There may be short-term costs in transitioning to iterative development (e.g., software factory,

training). However, based on the experience of the commercial sector, net costs can be expected

to decrease after adopting iterative development.

Recommendations 4: Current and Legacy Programs in Development, Production,

and Sustainment

For ongoing development programs, the Under Secretary of Defense for Acquisition and

Sustainment (USD(A&S)) should immediately task the PMs with the PEOs for current programs

to plan transition to a software factory and continuous iterative development. Defense prime

18 Such metrics should also be used by the DoD, the GAO, and Congress. For more information on Agile
contracting approaches and metrics, see the U.S. Digital Services TechFAR Handbook at
https://techfarhub.cio.gov/handbook/.

https://techfarhub.cio.gov/handbook/

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 26

contractors should transition execution to a hybrid model, within the constraints of their current

contracts. Defense prime contractors should incorporate continuous iterative development into

a long-term sustainment plan. The USD(A&S) should immediately task the SAEs to provide a

quarterly status update to the USD(A&S) on the transition plan for programs, per the ACAT

category.

For legacy programs where development is complete, the USD(A&S) should immediately task the

PMs with the PEOs to make the business case for whether to transition the program.

Over the next year, the USD(A&S) should task the PMs of programs that have transitioned

successfully to modern software development practices to brief best practices and lessons

learned across the Services.

Recommendation 5: Workforce

The U.S. Government does not have modern software development expertise in its program

offices or the broader functional acquisition workforce. This requires Congressional engagement

and significant investment immediately.

Over the next two years, the service acquisition commands (e.g., the LCMC, the NAVAIR, the U.S.

Naval Sea Systems Command (NAVSEA), and the AMC) need to develop workforce competency

and a deep familiarity of current software development techniques. To do so, they should acquire

or access a small cadre of software systems architects with a deep understanding of iterative

development. Services acquisition commands should use this cadre early in the acquisition

process to formulate acquisition strategy, develop source selection criteria, and evaluate

progress. The goal is to ensure software development expertise is established as core to the

program and to ensure the mission is done in smaller pieces with functionality at each step.

Beyond development of coders and developers, there is a need for software-informed PMs,

sustainers and software acquisition specialists. In 2018, the Service Acquisition Career Managers

should develop a training curriculum to create and train this cadre. The SAE and the PEO should

ensure the PMs of software-intensive programs are knowledgeable about software and with

software acquisition training. The USD(A&S) and the USD(R&E) should direct the Defense

Acquisition University (DAU) to establish curricula addressing modern software practices

leveraging expertise from the DDS, the FFRDCs, and the University Affiliated Research Centers

(UARCs).

Defense prime contractors must build internal competencies in modern software methodologies.

Starting immediately, the chief executive officers (CEOs) of DoD prime contractors should brief

the USD(A&S) at least annually to demonstrate progress on adapting modern software practices,

including their corporations’ proficiencies in establishing effective software factories.

Working with Congress in 2018, the DoD career functional Integrated Product Team (IPT) leads

should immediately establish a special software acquisition workforce fund modeled after the

Defense Acquisition Workforce Development Fund (DAWDF), the purpose of which is to hire and

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 27

train a cadre of modern software acquisition experts across the Services. The objective is to have

500 or more software acquisition experts per year starting in FY2019.

Within FY2019, the PMs should create an iterative development IPT with associated training. The

Service Chiefs should delegate the role of Product Manager to these IPTs.

Recommendation 6: Software is Immortal – Software Sustainment

Starting immediately, the USD(R&E) should direct that requests for proposals (RFPs) for

acquisition programs entering risk reduction and full development should specify the basic

elements of the software framework supporting the software factory, including code and

document repositories, test infrastructure (e.g., gtest), software tools (e.g., fuzz testing,

performance test harnesses), check-in notes, code provenance, and reference and working

documents informing development, test, and deployment. These should then be reflected in the

source selection criteria for the RFP.

Availability, cost, compatibility, and licensing restrictions of such framework elements to the U.S.

Government and its contractors should also be part of the selection criteria for contract award.

During the RFP-phase, proposers may designate pre-existing components not developed under

the proposal but used or delivered as part of the project. However, limitations related to use or

access to underlying design information (including components designed using the software

factory approach) may also be a selection criteria.

Except for such pre-existing components, all documentation, test files, coding, application

programming interfaces (APIs), design documents, results of fault, performance tests conducted

using the framework, and tools developed during the development, as well as the software

factory framework, should be:

‒ delivered to the U.S. Government at each production milestone; or

‒ escrowed and delivered at such times specified by the U.S. Government (i.e., end of

production, contract reward).

Selection preference should be granted based on the ability of the United States to reconstitute

the software framework and rebuild binaries, re-run tests, procedures, and tools against delivered

software, and documentation. These requirements should flow down to subcontractors and

suppliers subject to reasonable restrictions affecting use, duplication, and disclosure of material

not originally created as part of the development agreement.

Recommendation 7: Independent Verification and Validation for Machine Learning

Machine learning is an increasingly important component of a broad range of defense systems,

including autonomous systems, and will further complicate the challenges of software acquisition.

The Department must invest to build a better posture in this critical technology. Under the

leadership and immediate direction of the USD(R&E), the Defense Advanced Research Projects

Agency (DARPA), the SEI FFRDC, and the DoD laboratories should establish research and

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 28

experimentation programs around the practical use of machine learning in defense systems with

efficient testing, independent verification and validation (IVV), and cybersecurity resiliency and

hardening as the primary focus points. They should establish a machine learning and autonomy

data repository and exchange along the lines of the U.S. Computer Emergency Readiness Team

(US-CERT) to collect and share necessary data from and for the deployment of machine learning

and autonomy. They should create and promulgate a methodology and best practices for the

construction, validation, and deployment of machine learning systems, including architectures

and test harnesses.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix A | A-1

Appendix A: Task Force Terms of Reference

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix A | A-2

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix B | B-1

Appendix B: Task Force Membership

Chairs

Dr. William LaPlante
MITRE

Dr. Robert Wisnieff
IBM

Members

Dr. Victoria Coleman
Wikimedia

Dr. Paul Nielsen
Carnegie Mellon University

Mr. Christopher Lynch
Defense Digital Services

Dr. Fred Schneider
Cornell University

Dr. Joe Markowitz
Unaffiliated

Mr. Lou Von Thaer
Batelle

Mr. Robert Nesbit
Unaffiliated

Mr. Alfonso Velosa
Gartner, Inc.

Government Advisors

Ms. Cynthia Schurr
U.S. Air Force (SAF/AQ)

Mr. Joseph Heil
Naval Surface Warfare Center, Dahlgren
Division

Executive Secretary

Mr. James Thompson
Office of the Deputy Assistant Secretary of Defense for Systems Engineering

Defense Science Board Secretariat

Edward C. Gliot
Executive Director, Acting
(beginning August 2017)

Lt Col Victor Osweiler, USAF
Deputy for Operations
(October 2016-August 2017)

Karen D. H. Saunders
Executive Director
(October 2016-August 2017)

Lt Col Milo Hyde, USAF
Deputy for Operations
(beginning October 2017)

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix B | B-2

Study Support

Ms. Sarah Gamberini
SAIC

Ms. Brenda Poole
SAIC

Ms. Ashley Conner
SAIC

Mr. Ari Kattan
SAIC

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix C | C-1

Appendix C: Recommendations

Recommendation 1: Software Factory

A key evaluation criterion in the source selection process should be the efficacy of the offeror’s

software factory.

The Under Secretary of Defense for Research and Engineering (USD(R&E)) should immediately

task the Defense Digital Service (DDS), the U.S. Air Force Life Cycle Management Center (LCMC),

the Software Engineering Institute (SEI) Federally Funded Research and Development Center

(FFRDC), the U.S. Naval Air Systems Command (NAVAIR), and the Army Materiel Command

(AMC) to establish a common list of source selection criteria for evaluating software factories for

use throughout the Department (see Appendix E for suggested draft criteria). To be considered

minimally viable for a proposal, competing contractors should have to demonstrate at least a

pass-fail ability to construct a software factory. The criteria should be reviewed and updated every

five years.

The DoD has limited iterative development expertise. Focusing this expertise during source

selection uses this limited talent in the most efficient way.

Recommendation 2: Continuous Iterative Development

The DoD and its defense industrial base partners should adopt continuous iterative development

best practices for software, including through sustainment.

The Service Acquisition Executives (SAE), with the program executive officers (PEOs), the

program managers (PMs), and the Joint Staff/J-8, should, over the next year, identify minimum

viable product (MVP) approaches and delegate acquisition authority to the PM (cascade

approach), providing motivation to do MVP and work with the users to:

‒ deliver a series of viable products (starting with MVP) followed by successive next viable

products (NVPs);

‒ establish MVP and the equivalent of a product manager for each program in its formal

acquisition strategy, and arrange for the warfighter to adopt the initial operational

capability (IOC) as an MVP for evaluation and feedback; and

‒ engage Congress to change statutes to transition Configuration Steering Boards (CSB) to

support rapid iterative approaches (Fiscal Year (FY) 2009 National Defense Authorization

Act (NDAA), Section 814).

The Defense Acquisition Executive (DAE) and the SAE or the Milestone Decision Authority (MDA)

(i.e., PEO or PM) should require all programs entering Milestone B to implement these iterative

processes for Acquisition Category (ACAT) I, II, and III programs. The goal is not to be overly

prescriptive, and the details should be tailored to each program. Progress should be made on this

action by summer 2018.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix C | C-2

The SAE should identify best practices and decide how to incorporate these practices into regular

program reviews (e.g., the Defense Acquisition Boards (DABs), the Internal Program Reviews

(IPRs), and the Service Review Boards), and waivers should be done only by exception.

Recommendation 3: Risk Reduction and Metrics for New Programs

For all new programs, starting immediately, the following best practices should be implemented

in formal program acquisition strategies.

The MDA (with the DAE, the SAE, the PEO, and the PM) should allow multiple vendors to begin

work. A down-select should happen after at least one vendor has proven they can do the work,

and should retain several vendors through development to reduce risk, as feasible.

The MDA with the Cost Assessment and Program Evaluation office (CAPE), the USD(R&E), the

Service Cost Estimators, and others should modernize cost and schedule estimates and

measurements. They should evolve from a pure SLOC approach to historical comparables as a

measurement, and should adopt the National Reconnaissance Office (NRO) approach

(demonstrated in Box 5) of contracting with the defense industrial base for work breakdown

schedule data to include, among others, staff, cost, and productivity.

The MDA should immediately require the PM to build a program-appropriate framework for

status estimation. Example metrics include:19

‒ Sprint Burndown: tracks the completion of work throughout the sprint.

‒ Epic and Release Burndown: tracks the progress of development over a larger body of

work than a sprint.

‒ Velocity: the average amount of work a team completes during a sprint.

‒ Control Chart: focus on the cycle time of individual issues—the total time from “in

progress” to “complete.”

‒ Cumulative Flow Diagram: shows whether the flow of work across the team is consistent;

visually points out shortages and bottlenecks.

There may be short-term costs in transitioning to iterative development (e.g., software factory,

training). However, based on the experience of the commercial sector, net costs can be expected

to decrease after adopting iterative development.

Recommendation 4: Current and Legacy Programs in Development, Production, and

Sustainment

For ongoing development programs, the Under Secretary of Defense for Acquisition and

Sustainment (USD(A&S)) should immediately task the PMs with the PEOs for current programs

19 Such metrics should also be used by the DoD, the GAO, and Congress. For more information on Agile
contracting approaches and metrics, see the U.S. Digital Services TechFAR Handbook at
https://techfarhub.cio.gov/handbook/.

https://techfarhub.cio.gov/handbook/

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix C | C-3

to plan transition to a software factory and continuous iterative development. Defense prime

contractors should transition execution to a hybrid model, within the constraints of their current

contracts. Defense prime contractors should incorporate continuous iterative development into

a long-term sustainment plan. The USD(A&S) should immediately task the SAEs to provide a

quarterly status update to the USD(A&S) on the transition plan for programs, per the ACAT

category.

For legacy programs where development is complete, the USD(A&S) should immediately task the

PMs with the PEOs to make the business case for whether to transition the program.

Over the next year, the USD(A&S) should task the PMs of programs that have transitioned

successfully to modern software development practices to brief best practices and lessons

learned across the Services.

Recommendation 5: Workforce

The U.S. Government does not have modern software development expertise in its program

offices or the broader functional acquisition workforce. This requires Congressional engagement

and significant investment immediately.

Over the next two years, the service acquisition commands (e.g., the LCMC, the NAVAIR, the U.S.

Naval Sea Systems Command (NAVSEA), and the AMC) need to develop workforce competency

and a deep familiarity of current software development techniques. To do so, they should acquire

or access a small cadre of software systems architects with a deep understanding of iterative

development. Services acquisition commands should use this cadre early in the acquisition

process to formulate acquisition strategy, develop source selection criteria, and evaluate

progress. The goal is to ensure software development expertise is established as core to the

program and to ensure the mission is done in smaller pieces with functionality at each step.

Beyond development of coders and developers, there is a need for software-informed PMs,

sustainers and software acquisition specialists. In 2018, the Service Acquisition Career Managers

should develop a training curriculum to create and train this cadre. The SAE and the PEO should

ensure the PMs of software-intensive programs are knowledgeable about software and with

software acquisition training. The USD(A&S) and the USD(R&E) should direct the Defense

Acquisition University (DAU) to establish curricula addressing modern software practices

leveraging expertise from the DDS, the FFRDCs, and the University Affiliated Research Centers

(UARCs).

Defense prime contractors must build internal competencies in modern software methodologies.

Starting immediately, the chief executive officers (CEOs) of DoD prime contractors should brief

the USD(A&S) at least annually to demonstrate progress on adapting modern software practices,

including their corporations’ proficiencies in establishing effective software factories.

Working with Congress in 2018, the DoD career functional Integrated Product Team (IPT) leads

should immediately establish a special software acquisition workforce fund modeled after the

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix C | C-4

Defense Acquisition Workforce Development Fund (DAWDF), the purpose of which is to hire and

train a cadre of modern software acquisition experts across the Services. The objective is to have

500 or more software acquisition experts per year starting in FY2019.

Within FY2019, the PMs should create an iterative development IPT with associated training. The

Service Chiefs should delegate the role of Product Manager to these IPTs.

Recommendation 6: Software is Immortal – Software Sustainment

Starting immediately, the USD(R&E) should direct that requests for proposals (RFPs) for

acquisition programs entering risk reduction and full development should specify the basic

elements of the software framework supporting the software factory, including code and

document repositories, test infrastructure (e.g., gtest), software tools (e.g., fuzz testing,

performance test harnesses), check-in notes, code provenance, and reference and working

documents informing development, test, and deployment. These should then be reflected in the

source selection criteria for the RFP.

Availability, cost, compatibility, and licensing restrictions of such framework elements to the U.S.

Government and its contractors should also be part of the selection criteria for contract award.

During the RFP-phase, proposers may designate pre-existing components not developed under

the proposal but used or delivered as part of the project. However, limitations related to use or

access to underlying design information (including components designed using the software

factory approach) may also be a selection criteria.

Except for such pre-existing components, all documentation, test files, coding, application

programming interfaces (APIs), design documents, results of fault, performance tests conducted

using the framework, and tools developed during the development, as well as the software

factory framework, should be:

‒ delivered to the U.S. Government at each production milestone; or

‒ escrowed and delivered at such times specified by the U.S. Government (i.e., end of

production, contract reward).

Selection preference should be granted based on the ability of the United States to reconstitute

the software framework and rebuild binaries, re-run tests, procedures, and tools against delivered

software, and documentation. These requirements should flow down to subcontractors and

suppliers subject to reasonable restrictions affecting use, duplication, and disclosure of material

not originally created as part of the development agreement.

Recommendation 7: Independent Verification and Validation for Machine Learning

Machine learning is an increasingly important component of a broad range of defense systems,

including autonomous systems, and will further complicate the challenges of software acquisition.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix C | C-5

The Department must invest to build a better posture in this critical technology. Under the

leadership and immediate direction of the USD(R&E), the Defense Advanced Research Projects

Agency (DARPA), the SEI FFRDC, and the DoD laboratories should establish research and

experimentation programs around the practical use of machine learning in defense systems with

efficient testing, independent verification and validation (IVV), and cybersecurity resiliency and

hardening as the primary focus points. They should establish a machine learning and autonomy

data repository and exchange along the lines of the U.S. Computer Emergency Readiness Team

(US-CERT) to collect and share necessary data from and for the deployment of machine learning

and autonomy. They should create and promulgate a methodology and best practices for the

construction, validation, and deployment of machine learning systems, including architectures

and test harnesses.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix D | D-1

Appendix D: Briefings Received

18 October 2016 Meeting

Summary of Past Studies

Defense Science Board

OCX GPS

Former Commander, Space, and Missile

Systems Center and Program Executive

Officer for Space

Joint Strike Fighter F-35 Program Office

Program Executive Officer for the F-35

Lightning II Joint Program Office

DoD Software Challenges: Acquisition

Program Performance, with Additional

Considerations

Office of the Deputy Assistant Secretary of

Defense for Systems Engineering

28-29 November 2016 Meeting

Cost Assessment

CAPE

Intelligence Software Acquisition

Director National Intelligence Division,

OUSD(AT&L) SSI; ODNI/SRA, Director Cost

Analysis; NRO Director, Mission Processing

Systems Program Office; NGA Program

Manager; NSA Program Manager

Contracting: Performance Incentives

Defense Procurement and Acquisition Policy

Software Sustainment

Renaissance Strategic Advisors Managing

Partner, Enlightenment Capital

Open Architecture

USAF Rapid Capabilities Office

Improving Software Acquisition for Aviation

U.S. Army RDECOM

21 December 2016 Meeting

Test and Evaluation

DASD(Developmental Test and Evaluation),

Director, Test Resource Management Center

Defense Digital Service Overview

Defense Digital Service

Why Contractors Think the Way They Do

Defense Science Board

Software Challenges and Best Practices

Deputy Chief Engineer for the Naval Surface

Warfare Center Dahlgren Division

Security and Software

Defense Science Board

7-8 February 2017 Meeting

Google’s Practices for Developing and

Testing Memory-safe C++ Code

Software Engineer, Google

IBM Agile

Vice President, Agile, Talent, and Business

Management, IBM

IBM Blockchain

IBM

Large-scale Systems at Facebook

Engineering Director, Release Engineering,

Facebook

Kaggle: The Home of Data Science

CEO, Kaggle

Software Security

Qualcomm

Brave Software

CEO and Founder, Brave Software Inc.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix D | D-2

Commercial vs. Government Software

Development

Director Advanced Technology and Projects,

Google

7-8 March 2017 Meeting

Raytheon

CEO, Raytheon Company

18F

Innovation Specialist, General Services

Administration-18F

Acquisition Reform

House Armed Services Committee

4 April 2017 Meeting

Defense Digital Service Program Reports

Review

Air Force Digital Service and Defense Digital

Service

Air Force Expeditionary Combat Support

System (ECSS)

Cyber/Netcentric Directorate Deputy

Director

Recent Advances in Deep Learning

Carnegie Mellon University

Intellectual Property

Former Director of Defense Procurement

and Acquisition Policy

2-3 May 2017 Meeting

Lockheed Martin

Executive Vice President of Lockheed Martin

Aeronautics

Air Operations Center (AOC) 10.2

Program Executive Office for Battle

Management, Air Force Life Cycle

Management Center

5-6 June 2017 Meeting

Software Development for Command,

Control, and Communications (C3) Cyber,

Business Systems (C3CB)

DASD C3CB

Boeing

Senior Technical Fellow, Software and

Systems, Boeing

Code for America

Co-founder United States Digital Service

SpaceX Teleconference

SpaceX Development Team

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix E | E-1

Appendix E: Software Factory Source Selection Criteria Suggestions

 Configuration management software (e.g., Puppet, Chef, Ansible)

 Continuous integration (build and test) systems (e.g., Travis CI for hosted service, Jenkins

for open source application)

 Scripts and code used to release software (e.g., Python scripts)

 Servers, network, or other infrastructure that support release tools

 Software and tools to support developer self-service operations (New Relic for application

performance over time, diagnostic tools, monitoring)

 External test frameworks (e.g., Jersey Test Framework, TestPlant/eggPlant)

 External operational monitoring and log mining tools (e.g., Splunk, Elasticsearch +

Logstash + Kibana (ELK) Stack)

 Source code repositories (e.g., Github for hosted service, GitLab for open source

application)

 Issue tracking systems (e.g., JIRA, Trello, GitHub)

 Container driven tools (e.g., Docker, Elastic Container Service (Amazon Web Services

(AWS)), Kubernetes)

 Requirements management (e.g., DOORS (Dynamic Object Oriented Requirements

System), Blueprint)

 Infrastructure and cloud providers (e.g., AWS, Rackspace, Azure, Red Hat OpenShift,

Pivotal Cloud Foundry)

 Integrated development environment (IDE) DevOps process

Figure E-1. Software Factory in Source Selection

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix F | F-1

Appendix F: Acronyms and Abbreviated Terms

ACAT Acquisition Category

AMC Army Materiel Command

AOC Air Operations Center

API application programing interfaces

ASEE American Society for Electrical Engineering

AWS Amazon Web Services

C3CB Command, Control, and Communications, Cyber, Business Systems

CAPE Cost Assessment and Program Evaluation office

CEO Chief Executive Officer

COCOMO Constructive Cost Model

CSB Configuration Steering Board

DAB Defense Acquisition Board

DAE Defense Acquisition Executive

DARPA Defense Advanced Research Projects Agency

DASD(C3CB) Deputy Assistant Secretary of Defense for C3CB

DASD(DT&E)

Deputy Assistant Secretary of Defense for Development, Testing, and

Evaluation

DASD(R&E) Deputy Assistant Secretary of Defense for Research and Engineering

DAU Defense Acquisition University

DAWDF Defense Acquisition Workforce Development Fund

DDS Defense Digital Service

DNI Director of National Intelligence

DoD Department of Defense

DOORS Dynamic Object Oriented Requirements System

DSB Defense Science Board

ECSS Expeditionary Combat Support System

ELK Elasticsearch + Logstash + Kibana

EW electronic warfare

FFRDC Federally Funded Research and Development Center

FY fiscal year

GAO Government Accountability Office

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix F | F-2

GPS global positioning system

ICE independent cost estimate

IDE integrated development environment

IEEE Institute of Electrical and Electronics Engineers

IOC initial operational capability

IPR Internal Program Review

IPT Integrated Product Team

IT information technology

IVV independent verification and validation

LCMC Air Force Life Cycle Management Center

LOC Lines of Code

MDA Milestone Decision Authority

MFP Major Force Program

MVP minimum viable product

NAVAIR U.S. Naval Air Systems Command

NAVSEA U.S. Naval Sea Systems Command

NDAA National Defense Authorization Act

NIST National Institute of Standards and Technology

NRO National Reconnaissance Office

NSA National Security Agency

NSWC U.S. Naval Surface Warfare Center

NVP next viable product

OCX Raytheon GPS operational control system

ODASD(SE)

Office of the Deputy Assistant Secretary of Defense for Systems

Engineering

ODNI Office of the Director of National Intelligence

OUSD(AT&L)

Office of the Under Secretary of Defense for Acquisition, Technology, and

Logistics

P3I Planning, Performance, Process and Innovative Solutions

PEO program executive officer

PM program manager

RDECOM U.S. Army Research, Development, and Engineering Command

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix F | F-3

ROI return on investment

RFP request for proposal

SAE Service Acquisition Executive

SAF/AQ Assistant Secretary of the Air Force for Acquisition

SEI Software Engineering Institute

SLOC source lines of code

SRA Systems and Resource Analyses

SSI Space, Strategic, and Intelligence Systems

UARC University Affiliated Research Center

US-CERT U.S. Computer Emergency Readiness Team

USAF U.S. Air Force

USD(A&S) Under Secretary of Defense for Acquisition and Sustainment

USD(R&E)

USSOCOM

Under Secretary of Defense for Research and Engineering

United States Special Operations Command

XP extreme programming

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix G | G-1

Appendix G: Glossary

Agile
Agile or continuous iterative development,

where a team develops software in smaller

blocks that can be incrementally evaluated by a

user community

Amazon Web Services
Subsidiary of Amazon that provides on-demand

cloud computing platforms on paid subscription

basis

Ansible
Software that automates software provisioning,

configuration management, and application

deployment

architecture
Depiction of the system that aids in the

understanding of how the system will behave

automated build
Process of automating the creation of a

software build and the associated processes

automated test
Use of special software to control the execution

of tests and comparison of actual outcomes with

predicted outcomes

Azure
Microsoft cloud computing service for building,

testing, deploying, and managing applications

and services through a global network of

Microsoft-managed data centers

beta user
In beta testing, the second phase of software

testing in which a sampling of the intended

audience tries the product

blueprint
Final product of a software blueprinting process

C
General purpose, imperative computer

programming language

check-in notes
Used for software version control

Chef
Configuration management tool written in Ruby

and Erlang, using pure-Ruby, domain-specific

language for writing system configuration

"recipes"

code provenance
Determining originator of the code for legal and

auditing purposes

collaboration
Application software designed to help people

involved in a common task to achieve goals

continuous integration
Practice of merging all developer working copies

to a shared mainline several times a day

control chart
Statistical process tool to determine if

manufacturing or business process is in a state

of control

cumulative flow diagram
Tool used in queuing theory

cross-coupling
Interdependence between software modules

cyber red team
Group of white-hat hackers that attack

organization's digital infrastructure as an

attacker would in order to test organization's

defenses

developer
Person concerned with facets of software

development process, including research, design,

programming, and testing computer software

docker
Software technology providing containers,

promoted by Docker, Inc.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix G | G-2

documentation
Written text or illustration that accompanies

computer software or is embedded in the source

code

DOORS
Rational Dynamic Object Oriented Requirements

System (DOORS) is a requirement management

tool

dynamic test
Examination of the physical response from the

system to variables that are not constant and

change with time

ELK Stack
Program that consists of Elasticsearch, Logstash,

and Kibana programs

executable code
Coding causes a computer to perform indicated

tasks according to encoded instructions

features list
Set of related requirements that allow the user

to satisfy a business objective or need

fuzz testing
Automated software testing technique that

involves providing invalid, unexpected, or

random data as inputs to a computer program

GitHub
Web-based version control repository hosting

service

GitLab
Web-based repository manager with wiki and

issue tracking features, using an open source

license

gtest
Google Test, a unit testing library for the C++

programming language, based on the xUnit

architecture

iteration
Single development cycle, usually measured in

one or two weeks

iterative development
Way of breaking down the software

development of a large application into smaller

chunks

Jenkins
Open source automation server written in Java

Jersey Test Framework
An external test framework

JIRA
Proprietary issues tracking product providing

bug tracking, issue tracking, and project

management functions, developed by Atlassian

Kubernetes
Open-source system for automating

deployment, scaling, and management of

containerized applications, originally designed

by Google and donated to the Cloud Native

Computing Foundation

minimum viable product
Development technique in which a new product

or website is developed with sufficient features

to satisfy early adopters

New Relic
Company that provides digital intelligence

platforms and delivers application performance

monitoring as a purely software as a service

product

nightly build
Daily practice of executing a software build of

the latest version of a program to ensure all

required dependencies are present

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix G | G-3

NIST Guidelines
National Institute of Standards and Technology,

a measurement standards laboratory and a non-

regulatory agency of the U.S. Department of

Commerce that promotes innovation and

industrial competitiveness

open source
Denoting software for which the original source

code is made freely available and may be

redistributed and modified

overflow
A situation that occurs when more information is

being transmitted than the hardware can handle

package
Application program developed for sale to the

general public

peer review
Type of software review in which a product is

examined by its author or one or more

colleagues to evaluate its technical content and

quality

Pivotal Cloud Foundry
Open-source, multi-cloud application platform

for continuous delivery in supporting the full

application development lifecycle

product manager
Administrator of product responsible for the

strategy, roadmap, and feature definition for

said product or product line

Puppet
Open-source software configuration

management tool

Python
Widely used high-level programming language

for general-purpose programming

Rackspace
Managed cloud computing company

Red Hat Openshift
Computer software product for container-based

software deployment and management

release
Distribution of final version of an application

scripts
Program or sequence of instructions interpreted

or carried out by another program

Scrum
a framework for managing Agile software
development

silos
Isolated point in a system where data is kept and

segregated from other parts of the architecture

software factory
low-cost, cloud-based computing used to

assemble a set of tools enabling developers,

users, and management to work together on a

daily tempo

source code
Text listing of commands to be compiled or

assembled into an executable computer

program

source lines of code
Software metric used to measure size of

computer program by counting the number of

lines in the text of the program's source code

source repository
Central file storage location

spin
Verification system for models of distributed

software systems

spirals
Model that is similar to incremental

development for a system, with more emphasis

placed on risk analysis

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix G | G-4

Splunk
Company that produces software for searching,

monitoring, and analyzing machine-generated

big data, via web-style interface

sprint
A set period of time during which specific work is

to be completed and made ready for review

static testing
Dry run testing, a form of software testing

where the actual program or application is not

used

style checker
Computer application that identifies possible

usage errors or stylistic infelicities in text; also

known as grammar checker

swift
Programming language for macOS, iOS, and

tvOS

system architecture
High-level structures of software system, the

discipline of creating such structures, and the

documentation of said structures

test harnesses
Collection of software and test data configured

to test a program unit by running it under

varying conditions and monitoring its behavior

and outputs

TestPlant/eggPlant
Black-box graphical user interface test

automation tool

tool chain
Set of programming tools used to perform

complex software development task or to create

a software product

Travis CI
Hosted, distributed continuous integration

service used to build and test software projects

hosted at GitHub

Trello
Web-based project management application

unit testing
Software testing method where individual units

of source code, sets of one or more computer

program modules together with associated

control data, usage procedures, and operating

procedures, are tested to determine whether

they are fit for use

user
Person that a software program or hardware

device is designed for

variable
Value that can change depending on conditions

or on information passed to the program

velocity
Metric used for planning sprints and measuring

team performance in software development

Waterfall
Progress flows in largely one direction through

the phases of conception, initiation, analysis,

design, construction, testing, deployment, and

maintenance

For Agile specific terms, recommend the following source:

https://confluence.atlassian.com/agile/glossary.

https://confluence.atlassian.com/agile/glossary

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix H | H-1

Appendix H: Index

 Page Number

Agile Memo from DSB Chair, Memo from
Co-chairs, 1, Fig. 3, 6, 12, Fig. 8, 14–16,

Fig.11, 19, 22–23, 25, C-2 (footnote),
D-1, G-1, G-2, G-3

Amazon Web Services E-1, F-1, G-1

Ansible E-1, G-1

architecture Memo from Co-chairs, 4, 8, 11–12, 14,
22, 28, C-5, D-5, G-1, G-2, G-3, G-4

automated build Fig. 6, Fig. 7, G-1

automated test Fig. 6, Fig. 7, 10–11, 19, G-1

Azure E-1, G-1

beta user Fig. 6, Fig. 7, G-1

blueprint E-1, G-1

C 9, G-1

check-in notes 27, C-4, G-1

Chef E-1, G-1

code provenance 27, C-4, G-1

collaboration Fig. 3, 12, G-1

continuous integration E-1, G-1, G-4

control chart 25, C-2, G-1

cumulative flow diagram 25, C-2, G-1

cyber red team Fig. 7, G-1

developer 1, 7, 9, 16, 26, C-3, E-1, G-1

docker E-1, G-1

documentation Fig. 6, Fig. 7, 15 (footnote), 18, 27, C-4,
G-2, G-4

DOORS E-1, F-1, G-2

dynamic test Fig. 6, Fig. 7, G-2

ELK Stack E-1, F-1, G-2

executable code 9, G-2

features list Fig. 5, G-2

fuzz testing 1, Fig. 6, Fig. 7, 9–10, 17, 27, C-4, G-2

GitHub E-1, G-2, G-4

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix H | H-2

GitLab E-1, G-2

gtest 27, C-4, G-2

iteration 6–8, 20, G-2

iterative development Memo from DSB Chair,
Memo from Co-chairs,

1–3, 5–14, Fig. 5, 16–27,
C-1, C-2, C-3, C-4, G-2

Jenkins E-1, G-2

Jersey Test Framework E-1, G-2

JIRA E-1, G-2

Kubernetes E-1, G-2

minimum viable product (MVP) Memo from Co-chairs,
7–8,, 24, C-1, F-2, G-2

New Relic E-1, G-2

nightly build 7, G-2

NIST Guidelines Fig. 7, F-2, G-2

open source 1, 17, E-1, G-2, G-3

overflow 10, G-3

package Fig. 6, Fig. 7, G-3

peer review Fig. 5, 9, 17, G-3

performance test harnesses 27, C-4, G-3

Pivotal Cloud Foundry E-1, G-3

product manager 24, 27, C-1, C-4, G-3

Puppet E-1, G-3

Python 9, E-1, G-3

Rackspace E-1, G-3

Red Hat Openshift E-1, G-3

release 7, 15, 17, 25, C-2, D-2, E-1, G-3

scripts E-1, G-3

Scrum 19

silos Fig.3, 12, G-3

software factory Memo from DSB Chair,
Memo from Co-chairs, 6, Fig. 6, Fig. 7,

9–10, 14, 17, 19, 24–25, 27, C-1, C-2,
C-3, C-4, Fig. E-1, E-1, G-3

source code 9–10, E-1, G-2, G-3, G-4

source lines of code (SLOC) 3–4, Fig. 4, 7, 14, 22, 25, C-2, F-2, G-3

source repository Fig. 6, Fig. 7, G-3

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Appendix H | H-3

spirals 6, G-3

Splunk E-1, G-4

sprint Fig. 5, 23, 25, C-2, G-4

static testing 9, G-4

style checker 9, G-4

swift 9, G-4

system architecture Fig. 5, 14, G-4

test harness 28, C-5, G-4

TestPlant/eggPlant E-1, G-4

Tool chain 7, 10, 14, 17, G-4

Travis CI E-1, G-4

Trello E-1, G-4

unit testing 9, G-2, G-4

user 1, 6–7, 9–11, Fig. 6, Fig. 7, 16–17, 22,
24, C-1, G2, G-4

variable 9, 16, G-2, G-4

velocity 6, 25, C-2, G-4

Waterfall 1, Fig.3, 6–7, Fig. 4, 11, 14–16, 18,
22–23, G-4

THIS PAGE LEFT INTENTIONALLY BLANK

